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Introduction

We have been pursuing the creation of quantum dot arrays fabricated in crystalline silicon. We
wish to produce a two-dimensional array of crystalline Si(c-Si) quantum dots or boxes
surrounded by a hydrogenated amorphous Si(a-Si:H) matrix. The quantum dots are to be defined
spatially using the protein crystal masking technique described in our research grant and which
we now briefly summarize. This nanofabrication technique is implemented using two-
dimensional crystalline protein monolayers which are deposited on a substrate, metal shadowed
at oblique incidence with an ultrathin (~1 nm) titanium film, and then ion milled at normal
incidence. During milling the metal film is reconfigured through a combination of sputtering
and surface diffusion leaving a periodically nanostructured, ultrathin metal(oxide) film.
Moreover, we have found that this nanostructured screen acts as a mask for the pattern transfer

of a periodic array of holes or etch pits to the underlying substrate, which in the present case is
silicon.

Constrained Crystallization

Over the course of this effort we have concentrated on two approaches. Our initial attempts were
based on the results of Liu and Fonash (Appl. Phys. Lett. 55,660 (1989)) who found that a-Si:H,
when coated with a thin (<100A) layer of palladium, crystallized to cubic Si at temperatures
several hundred degrees lower than that required for uncoated a-Si:H. Our goal was to use our
protein crystal/metal oxide mask to create an array of 10 nm Pd dots with a 20 nm lattice
constant and to find annealing parameters so that we crystallize the Si under these Pd dots
without having the crystallized dots grow together. In initial experiments in this direction
we.used e-beam lithography to create an array of 1 um Pd squares separated by 1 um. To create
this array of 1 ym squares, we spun on 4% 950k PMMA onto our substrates (100A a-Si:H on
sapphire) at 5000 rpm for 30 seconds and cured at 160°C for two hours. We then thermally
evaporated 150A of Al onto the PMMA to prevent charging in the SEM. The pattern was
designed using DesignCad 2-D and written using a Philips SEM501. The x-y scan coils and
beam blanking were controlled with a Nanometer Pattern Generation System from J. C. Nabity
Lithography Systems using a DT2823 board from Data Translation, Inc. We dissolved the Al in
a NaOH solution and the pattern was developed by soaking in MIBK/IPA (1:3) for 60 seconds
and then rinsing with IPA for 30 seconds. We then deposited 20A of Pd at normal incidence
using e-beam evaporation. We annealed these samples for 10 minutes at various temperatures.
At 550°C, the Si crystallized beneath the Pd without bridging together. In fact, the crystallization
was confined to approximately less than 0.1 wm (100 nm). At 600°C, the crystallized areas
beneath the Pd began to bridge together.

Following this we began an investigation of annealing times and temperatures based on these
results but using the protein crystal masks. This requires that palladium catalyzed, selective Si
crystallization (and hole bridging) be controlled on the 10 nm length scale. This constraint of the
crystallization appears to be the major technical problem to be solved in this approach. The a-
Si:H beneath the Pd dots must crystallize completely, but at the same time, the crystallization
must not extend beyond the Pd dots. The two parameters that are available for controlling this
crystallization are annealing time and temperature. To date we have examined nanopatterned
samples which were annealed for 10 minutes at temperatures between 500°C and 600°C in
increments of 25°C. Pd-coated a-Si:H samples (not nanopatterned) were annealed in parallel and
used as controls. At this time no photoluminescence has been observed. It should be noted that
every luminescence measurement was plagued by scattered light that appeared in the final



spectra as either yellow or red peaks. The extraneous nature of these peaks can be readily
verified and this problem is being addressed.

Low Energy Electron Enhanced Etching (LE4)

In our second approach to the parallel fabrication of a c-Si quantum dot array we have used the
new etching method of low energy electron enhanced etching (LE4) to extend the surface
nanostructuring of silicon (accomplished with our biologically derived patterning templates)
deeper into the bulk. To assay the extent of LE4 Si etching we removed the mask and XPS
measurements were performed which show that the TiO7 was completely removed within the

sensitivity of XPS. AFM imaging of the bare silicon showed arrays of holes having the
hexagonal symmetry and lattice constant of the protein crystal template and hole depths which
exceeded those found on Si patterned with protein crystal/metal oxide masks and ion milling but
no LE4 processing. We then performed a novel 'metal staining' experiment in which 12A of Ti
was electron beam evaporated at normal incidence onto the sample in an attempt to enhance the
constrast of the patterned Si. The result of this experiment was that arrays of TiO? islands were

formed and these arrays display the same hexagonal symmetry and lattice constant of the protein
crystal used for patterning the surface. This can be explained by the fact that Ti can diffuse large
distances on passivated surfaces until it finds a defect site. Our post-LE4 surfaces appear to have
both defect sites and passivated areas and Ti adsorbed to the surface migrates to the defect sites
(where etching has occurred) rather than the weaker bonding sites in the passivated regions.
Once a few Ti atoms are adsorbed at defects, they act as nucleation sites for ensuing adsorption
of Ti. Thus, these experiments have shown that patterning a substrate with the (naturally self-
assembled) protein crystal mask can induce self-assembly of an ensuing free-standing, ordered
nano-array of metal clusters subsequent to mask removal.

Additionally, we have explored the use of LE4 as an alternative to ion beam milling as a means
of pattern transfer. In the work described in the previous paragraph, we used LE4 to extend the
surface nanostructuring of silicon deeper into the bulk but in all these experiments the pattern
transfer was always initiated by ion milling prior to the use of LE4. We have now found that
samples which experienced LE4 with no prior ion milling produced pattern transfer of
comparable or better fidelity than samples which had been ion milled prior to LE4.
Significantly, areas of the substrate covered only with titanium oxide but no S-layer protein
crystals ("off-S-layer" areas) were extremely smooth compared to such areas on the samples
which had been both ion milled and LE4'd. It appears that ion milling damages the titanium
oxide mask in the off-S-layer areas and that such damage can be avoided by using LE4 alone.

We note that the DC plasma chamber used for LE4 has been reconfigured compared to previous
experiments and in the new configuration the samples sit at a floating potential. The samples
were LE4'd for 45 minutes in 100 mtorr of 100% H? at a current of 60 mA. As an indication of

how non-damaging or 'gentle' the LE4 treatment is, a metallized sample is normally milled for
only 12 minutes to achieve shallow pattern transfer to the substrate while in these experiments
the samples were exposed to LE4 for 45 minutes, the mask itself remained very smooth (minimal
damage), and the pattern transfer to the substrate appears to be at least as deep (although
convolution of the AFM tip diameter with holes ~10 nm in diameter make this difficult to
determine at present).

The evidence that LE4 can itself produce pattern transfer could be important in determining the
best strategy for faithful pattern transfer with minimal fluctuations. We are now pursuing
experiments to explore the optimal thickness of titanium oxide deposited prior to LE4 and the
optimal shadowing angle for such deposition since removing the ion milling step in the pattern
transfer protocol subjects these steps to reexamination. Moreover, we are also pursuing the



possibility use of bare, that is, unmetallized S-layer protein crystals as patterning masks in LE4
mediated pattern transfer.

Metal Dot Arrays

Finally, another research finding is that in the case of samples which are ion milled, we have
found a way to fabricate the 'inverse' pattern in the surface nanostructuring of silicon. The
'inverse' pattern is easily described in relation to our basic processing protocol. Typically, the
titanium metal, 12 A as deposited, covers both the protein array and the pore sites between
proteins which together define the protein crystal (lattice constant 20 nm). Subsequent to ion
milling, the coating (which is now ~35 A of titanium dioxide) is redistributed so that the
substrate locations at the positions of the crystal pores are exposed. The remaining metal oxide
covers the proteins only, forming a network of lines crossing at angles of 120°/60° as determined
by the hexagonal lattice of the protein crystal.

We have now found that the deposition of 6 A of titanium as measured in vacuo onto (100)
silicon and which forms an oxide measured by atomic force microscopy to be 18 A yields the
opposite pattern when ion milled with parameters identical to the experiment described above.
That is, the pattern consists of an array of isolated metal dots which form an hexagonal lattice
with lattice constant 20 nm. It is now the uncoated area which is multiply-connected while in the
12 A experiment it is the metal oxide coated area which is multiply-connected and the uncoated
holes in the metal oxide overlayer form the hexagonal array of holes (‘antidots'). It is this
reciprocity in the pattern formation which results in the designation 'inverse' pattern. Our
intention is to attempt to LE4 these arrays of metal dots on silicon in order to extend the surface
nanostructuring deeper into the bulk. With such deeper, highly anisotropic initiation sites we

will then anodically etch the silicon in order to produce controlled pore sizes and silicon column
diameters.
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